5.4 卷积神经网络的可视化
5.4.1 可视化中间激活
5.4.2 可视化卷积神经网络的过滤器
5.4.3 可视化类激活的热力图
人工智能python实现-卷积神经网络的可视化
5.4 卷积神经网络的可视化
5.4.1 可视化中间激活
5.4.2 可视化卷积神经网络的过滤器
5.4.3 可视化类激活的热力图
5.4 卷积神经网络的可视化
5.4.1 可视化中间激活
5.4.2 可视化卷积神经网络的过滤器
5.4.3 可视化类激活的热力图
5.4 卷积神经网络的可视化
5.4.1 可视化中间激活
5.4.2 可视化卷积神经网络的过滤器
5.4.3 可视化类激活的热力图
人工智能:Python实现
《Artificial Intelligence with Python》
Introduction to Artificial Intelligence
What is AI ?
Why do we need to study AI?
人工智能:Python实现
《Artificial Intelligence with Python》
Introduction to Artificial Intelligence
What is AI ?
Why do we need to study AI?
《Artificial Intelligence with Python》
首先我们会介绍人工智能的基本知识,从中学习利用各种数据挖掘技术开发各种构建块的方法。你会看到如何实现不同的算法来得到佳的预期结果,理解如何将其应用于现实场景。
《Artificial Intelligence with Python》
首先我们会介绍人工智能的基本知识,从中学习利用各种数据挖掘技术开发各种构建块的方法。你会看到如何实现不同的算法来得到佳的预期结果,理解如何将其应用于现实场景。
5.3 使用预训练的卷积神经网络
5.3.1 特征提取
5.3.2 微调模型
5.3.3 小结
5.3 使用预训练的卷积神经网络
5.3.1 特征提取
5.3.2 微调模型
5.3.3 小结
5.2 在小型数据集上从头开始训练一个卷积神经网络.
5.2.1 深度学习与小数据问题的拟合相关性
5.2.2 下载数据
5.2.3 构建网络
5.2.4 数据预处理
5.2.5 使用数据增强
5.2 在小型数据集上从头开始训练一个卷积神经网络.
5.2.1 深度学习与小数据问题的拟合相关性
5.2.2 下载数据
5.2.3 构建网络
5.2.4 数据预处理
5.2.5 使用数据增强
5.1 卷积神经网络简介
5.1.1 卷积运算
5.1.2 最大池化运算
5.1 卷积神经网络简介
5.1.1 卷积运算
5.1.2 最大池化运算
4.5 机器学习的通用工作流程
4.5.1 定义问题,收集数据集
4.5.2 选择衡量成功的指标
4.5.3 确定评估方法
4.5.4 准备数据
4.5.5 开发比基准更好的模型
4.5.6 扩大模型规模:开发过拟合的
4.5.7 模型正则化与调节超参数
4.5 机器学习的通用工作流程
4.5.1 定义问题,收集数据集
4.5.2 选择衡量成功的指标
4.5.3 确定评估方法
4.5.4 准备数据
4.5.5 开发比基准更好的模型
4.5.6 扩大模型规模:开发过拟合的
4.5.7 模型正则化与调节超参数
4.3 数据预处理、特征工程和特征学习
4.3.1 神经网络的数据预处理
4.3.2 特征工程
4.4 过拟合与欠拟合
4.4.1 减小网络大小
4.4.2 添加权重正则化
4.4.3 添加 dropout正则化
4.3 数据预处理、特征工程和特征学习
4.3.1 神经网络的数据预处理
4.3.2 特征工程
4.4 过拟合与欠拟合
4.4.1 减小网络大小
4.4.2 添加权重正则化
4.4.3 添加 dropout正则化
4.1 机器学习的四个分支
4.1.1 监督学习
4.1.2 无监督学习
4.1.3 自监督学习
4.1.4 强化学习
4.2 评估机器学习模型
4.2.1 训练集、验证集和测试集
4.2.2 评估模型的注意事项
4.1 机器学习的四个分支
4.1.1 监督学习
4.1.2 无监督学习
4.1.3 自监督学习
4.1.4 强化学习
4.2 评估机器学习模型
4.2.1 训练集、验证集和测试集
4.2.2 评估模型的注意事项
3.6 预测房价:回归问题
3.6.1 波士顿房价数据集
3.6.2 准备数据
3.6.3 构建网络
3.6.4 利用 K折验证来验证你的方法
3.6 预测房价:回归问题
3.6.1 波士顿房价数据集
3.6.2 准备数据
3.6.3 构建网络
3.6.4 利用 K折验证来验证你的方法