4.1 机器学习的四个分支
4.1.1 监督学习
4.1.2 无监督学习
4.1.3 自监督学习
4.1.4 强化学习
4.2 评估机器学习模型
4.2.1 训练集、验证集和测试集
4.2.2 评估模型的注意事项
人工智能python实现-机器学习基础
4.1 机器学习的四个分支
4.1.1 监督学习
4.1.2 无监督学习
4.1.3 自监督学习
4.1.4 强化学习
4.2 评估机器学习模型
4.2.1 训练集、验证集和测试集
4.2.2 评估模型的注意事项
4.1 机器学习的四个分支
4.1.1 监督学习
4.1.2 无监督学习
4.1.3 自监督学习
4.1.4 强化学习
4.2 评估机器学习模型
4.2.1 训练集、验证集和测试集
4.2.2 评估模型的注意事项
4.1 机器学习的四个分支
4.1.1 监督学习
4.1.2 无监督学习
4.1.3 自监督学习
4.1.4 强化学习
4.2 评估机器学习模型
4.2.1 训练集、验证集和测试集
4.2.2 评估模型的注意事项
3.6 预测房价:回归问题
3.6.1 波士顿房价数据集
3.6.2 准备数据
3.6.3 构建网络
3.6.4 利用 K折验证来验证你的方法
3.6 预测房价:回归问题
3.6.1 波士顿房价数据集
3.6.2 准备数据
3.6.3 构建网络
3.6.4 利用 K折验证来验证你的方法
3.5 新闻分类:多分类问题
3.5.1 路透社数据集
3.5.2 准备数据
3.5.3 构建网络
3.5.4 验证你的方法
3.5.5 在新数据上生成预测结果
3.5.6 处理标签和损失的另一种方法
3.5.7 中间层维度足够大的重要性
3.5.8 进一步的实验
3.5 新闻分类:多分类问题
3.5.1 路透社数据集
3.5.2 准备数据
3.5.3 构建网络
3.5.4 验证你的方法
3.5.5 在新数据上生成预测结果
3.5.6 处理标签和损失的另一种方法
3.5.7 中间层维度足够大的重要性
3.5.8 进一步的实验
3.4 电影评论分类:二分类问题
3.4.1 IMDB数据集
3.4.2 准备数据
3.4.3 构建网络
3.4.4 验证你的方法
3.4.5 使用训练好的网络在新数据上生成预测结果 ….
3.4.6 进一步的实验
3.4 电影评论分类:二分类问题
3.4.1 IMDB数据集
3.4.2 准备数据
3.4.3 构建网络
3.4.4 验证你的方法
3.4.5 使用训练好的网络在新数据上生成预测结果 ….
3.4.6 进一步的实验
3.3 建立深度学习工作站
3.3.1 Jupyter笔记本:运行深度学习
3.3.2 运行 Keras:两种选择
3.3.3 在云端运行深度学习任务:
3.3.4 深度学习的最佳 GPU
3.3 建立深度学习工作站
3.3.1 Jupyter笔记本:运行深度学习
3.3.2 运行 Keras:两种选择
3.3.3 在云端运行深度学习任务:
3.3.4 深度学习的最佳 GPU
3.2 Keras简介
3.2.1 Keras、TensorFlow、Theano和CNTK
3.2.2 使用 Keras开发:概述
3.2 Keras简介
3.2.1 Keras、TensorFlow、Theano和CNTK
3.2.2 使用 Keras开发:概述
3.1 神经网络剖析
3.1.1 层:深度学习的基础组件
3.1.2 模型:层构成的网络
3.1.3 损失函数与优化器:配置学习过程的关键
3.1 神经网络剖析
3.1.1 层:深度学习的基础组件
3.1.2 模型:层构成的网络
3.1.3 损失函数与优化器:配置学习过程的关键
2.4神经网络的“引擎”:基于梯度的优化
2.4.1 什么是导数
2.4.2 张量运算的导数:梯度
2.4.3 随机梯度下降
2.4.4 链式求导:反向传播算法
2.5 回顾第一个例子
2.4神经网络的“引擎”:基于梯度的优化
2.4.1 什么是导数
2.4.2 张量运算的导数:梯度
2.4.3 随机梯度下降
2.4.4 链式求导:反向传播算法
2.5 回顾第一个例子
2.3神经网络的“齿轮”:张量运算
2.3.1 逐元素运算
2.3.2 广播
2.3.3 张量点积
2.3.4 张量变形
2.3.5 张量运算的几何解释
2.3.6 深度学习的几何解释
2.3神经网络的“齿轮”:张量运算
2.3.1 逐元素运算
2.3.2 广播
2.3.3 张量点积
2.3.4 张量变形
2.3.5 张量运算的几何解释
2.3.6 深度学习的几何解释
前面例子使用的数据存储在多维 Numpy数组中,也叫张量(tensor)。一般来说,当前所有机器学习系统都使用张量作为基本数据结构。张量对这个领域非常重要,重要到 Google的TensorFlow都以它来命名。那么什么是张量?
前面例子使用的数据存储在多维 Numpy数组中,也叫张量(tensor)。一般来说,当前所有机器学习系统都使用张量作为基本数据结构。张量对这个领域非常重要,重要到 Google的TensorFlow都以它来命名。那么什么是张量?